

WiPDA 2021 – Technical Program at a Glance

Program at a Glance	WiPDA 2
021 (Tutorials)	Day 1
021	Day 2
021 (details on Panel Session)4	Day 2
0215	Day 3
20216	Day 4
2021	Day 5
ember 10, 2021, 11.20 am	Virtua
ember 11, 2021, 11.20 am	Virtua

Day 1, November 7, 2021 (Tutorials)

	Session 1	.A	Session 1B		
	Speaker	Topic	Speaker	Topic	
8:00 AM	Peter Friedrichs, Infineon Technologies, United States	SiC Technology	Vamsi Putcha, IMEC - Belgium	RF GaN	
9:30 AM	Fang Luo, University of Arkansas, United States	Packaging/Modules	Sandeep Bahl, Jungwoo Joh, Texas Instruments, United States	GaN Technology	
11:00 AM	Break				
1:00 PM	Victor Veliadis, North Carolina State University, United States	MV SiC - Devices	Srabanti Chowdhury, Stanford University, United States	Vertical GaN	
2:30 PM	North Carolina State University, United States MV SiC - Circuits		Burak Ozpineci, ORNL, United States	WBG for Automotive	

All times in PST time zone

Day 2, November 8, 2021

	Plenary				
8:00 AM	Opening		Sameh Khalil, Infineon Technologies, United States		Welcome Message
8:15 AM	Opening		Matteo Meneghini, University of Padova, Italy		Technical Program of WiPDA 2021
8:30 AM	Keynote 1		Dan Kinzer, Navitas Semiconductor, United States		Advances in GaN Power ICs: Efficiency, Reliability & Autonomy
9:00 AM	Keynote 2		John W. Palmour, Wolfspeed, United States		SiC MOSFETs and the Drive for Electric Vehicles
9:30 AM	Break		Room 1		Room2
9:50 AM			S2A_1 - Comparison of Gate Oxide Lifetime Predictions with Charge-to-Breakdown Approach and Constant-Voltage TDDB on SiC Power MOSFET, Shengnan Zhu , Ohio State University, United States	Session 2B GaN Power 1: Performance, Trapping, Robustness	S2B_1 - 650V/780A GaN Power HEMT Enabling 10kW-Class High-Efficiency Power Conversion, Carl Neufeld, Transphorm Inc, United States
10:10 AM			S2A_2 - Impacts of Area-Dependent Defects on the Yield and Gate Oxide Reliability of SiC Power MOSFETs Tianshi Liu, Ohio State University, United States		S2B_2 - Evaluation of 650V, 100A Direct-Drive GaN Power Switch for Electric Vehicle Powertrain Applications, Qihao Song, CPES, Virginia Polytechnic Institute and State University, United States
10:30 AM		Session 2A SiC Devices 1: Device Reliability & Robustness	S2A_3 - A Static, Switching, Short-Circuit Characteristics of 1.2 kV 4H-SiC MOSFETs: Comparison Between Linear and (Bridged) Hexagonal Topology, Dongyoung Kim, State University of New York Polytechnic Institute, United States		S2B_3 - Quick Estimation of Chip Scale Package GaN Fets Thermal Performance Using a Simple Circuit Model, Assaad El Helou, Efficient Power Conversion, United States
10:50 AM			S2A_4 - Excellent Static and Dynamic Scaling of Power Handling Capability of the BaSIC(DMM) Topology with 1.2 kV SiC Power MOSFETs, Ajit Kanale , North Carolina State University, United States		S2B_4 - On-Wafer Investigation of Avalanche Robustness in 1.3kV GaN-on-GaN P-N Diode Under Unclamped Inductive Switching Stress, Bhawani Shankar, Stanford University, United States
11:10 AM			S2A_5 - Investigation on the Accuracy of the VSD-Method for Different SiC MOSFET Designs Considering Different Measurement Parameters, Felix Hoffmann, Universität Bremen, Germany		S2B_5 - Extreme GaN – What Happens When eGaN® Fets Are Exposed to Voltage and Current Levels Well Above Data Sheet Limits, Alex Lidow, Efficient Power Conversion, United States
11:30 AM	Break				
11:45 AM	Panel		Moderators: Brij N. Singh, Deere & Company, United States; Babak Parkhideh, UNC Charlotte, United States		Wide Bandgap (WBG) devices and their application to automotive, industrial, aerospace, defense, and energy systems
12:45 PM	End of the session				

Day 2, November 8, 2021 (details on Panel Session)

Title of Panel: Wide Bandgap (WBG) devices and their application to automotive, industrial, aerospace, defense, and energy systems

Moderator: Dr. Brij N. Singh (Deere & Company) and Dr. Babak Parkhideh (UNC Charlotte)

This panel has drawn experts from a variety of industries including automotive, defense, aerospace, industrial, and energy sectors. The panelists share and discuss their views on current and emerging applications of SiC and GaN power devices. An hour-long panel will have brief opening comments from the panelists followed by interactive and thought-provoking discussions on questions asked by WiPDA attendees. Panel discussions will uniquely cover similarity and differences between SiC and GaN power devices and their applications in automotive, industrial, aerospace, defense, and energy systems.

Panelists:

- Dr. Jing Xu, Senior Principal Scientist at ABB
- Dr. Shengyi Liu, Technical Fellow and Chief Architect of Platform Subsystems at Boeing
- Thomas Byrd, Senior Fellow, Power electronics and Power Systems at Lockheed Martin
- Dr. Sriram Chandrasekaran, Engineering Fellow at Raytheon
- Dr. Sanjeev Naik, Advanced Systems Dev, Electric Drives, Electronics, & Applications Engineering at GM
- Cory Combs, Ampaire Co-founder and TED Fellow
- Michael Harrison, Power Electronics Architect, Enphase Energy, USA

Day 3, November 9, 2021

Tuesday	Plenary				
8:00 AM	Keynote 3		Dr. Gerald Deboy, Infineon Technologies, United States		On the benefits of SiC and GaN in high power applications
8:30 AM	Keynote 4		Alex Lidow, Efficient Power Conversion, United States		Gallium Nitride Integration and the End of Discretes
9:00 AM	Break		Room 1		Room2
9:20 AM			S3A_1 - Switching Behavior and Dynamic on-Resistance of Lateral β-Ga2O3 MOSFETs Up to 400 V, Carsten Kuring, Technische Universität Berlin, Germany		S3B_1 - Low Contact Resistance CMOS-Compatible RF GaN-on-Silicon HEMTs, Hao Lu, Xidian University, China
9:40 AM		Session 3A	S3A_2 - Reverse Recovery and Rectification Characteristic of β-Ga2O3 Schottky Barrier Diode, Inhwan Lee, University at Buffalo, United States	Session 3B	S3B_2 - Microstructural Degradation Investigations of OFF-State Stressed 0.15 µm RF AlGaN/GaN HEMTs: Failure Mode Related Breakdown, Prabha Sana, Fraunhofer Institute for Microstructure of Materials and Systems, Germany
10:00 AM		ITRW	S3A_3 - Study of Voltage Balancing Techniques for Series- Connected Wide-Bandgap Semiconductor Devices, Alinaghi Marzoughi, Enphase Energy, United States	GaN RF	S3B_3 - Best Practices to Quantify Linearity Performance of GaN HEMTs for Power Amplifier Applications, Rafael Perez Martinez , Stanford University, United States
10:20 AM			S3A_4 - Diamond Integration on GaN for Channel Temperature Reduction, Mohamadali Malakoutian, Stanford University, United States		S3B_4 - Detrapping Kinetics in N-Polar AlGaN/GaN MIS-HEMTs, Francesca Chiocchetta, University of Padova, Italy
10:40 AM	Break				
11:00 AM			S3C_1 - Demonstration of High Voltage (15kV) Split-Gate 4H-SiC MOSFETs, Justin Lynch, State University of New York Polytechnic Institute, United States	Session 3D GaN Applications 1	S3D_1 - Compact GaN Power Modules with Direct Bonded Liquid-Cooled Heat Exchanger Suitable for EV Applications, Wei Jia Zhang, University of Toronto, Canada
11:20 AM			S3C_2 - Increased 3rd Quadrant Current Handling Capability of 1.2kV 4H-SiC JBS Diode-Integrated MOSFETs (JBSFETs) with Minimal Impact on the Forward Conduction and Blocking Performances, Stephen Mancini, State University of New York Polytechnic Institute, United States		S3D_2 - Online Junction Temperature Monitoring of Wide Bandgap Power Transistors Using Quasi Turn-on Delay As TSEP, Kanuj Sharma, ILH, Universität Stuttgart, Germany
11:40 AM		Session 3C SiC Devices 2: Novel Device Designs	S3C_3 - Analytical Method to Optimize Dynamic Performance of the Cascaded SuperCascode Power Switch, Utkarsh Mehrotra, North Carolina State University, United States		S2D_3- Switching Performance in a GaN Power Stage at Extreme Temperature Conditions, Martijn Duraij, Technical University of Denmark, Denmark
12:00 PM			S3C_4 - Comparison of the Capacitances and Switching Losses of 1.2 kV Common-Source and Common-Drain Bidirectional Switch Topologies, Ajit Kanale, North Carolina State University, United States		S2D_4 - A Generalized Circuit for Measuring GaN Dynamic Resistance, Michael Willhoff, Aerspace Corporation, United States
12:20 PM			S3C_5 - Development of Isolated CMOS and HV MOSFET on an N-epi / P-epi / 4H-SiC N+ Substrate for Power IC Applications, Sundar Babu Isukapati, State University of New York Polytechnic Institute, United States		S3D_5 - Design and Performance Analysis of High Density Universal Charger Featuring GaN Based Integrated Power Stage, Robert Vartanian, Infineon Technologies, United States
12:40 PM	End of the session				

Day 4, November 10, 2021

	Plenary				
8:00 AM	Keynote 5		Prof. Wai Tung Ng, University of Toronto, Canada		Smart Gate Driver ICs for GaN Power Transistors
8:30 AM	Keynote 6		Keisuke Shinohara, Teledyne Scientific & Imaging, United States		High-Frequency GaN-Based Transistor Technologies: Progress and Future
9:00 AM	Break		Room 1		Room2
9:20 AM			S4A_1 - GaN Devices for Motor Drives Applications, Marco Palma, Efficient Power Conversion, United States	Session 4B SiC Applications 1: Circuits and systems	S4B_1 - Design and Fabrication of SiC MOSFET Based Stepper Motor Driver for High-Temperature Environments, Ashwin Chandwani , Arizona State University, United States
9:40 AM		Session 4A GaN Applications 2	S4A_2 - Paralleling GaN Devices in a 13.56MHz Class Φ2 Inverter for high-Power Applications, Keerti Palanisamy, University of Minnesota, United States		S4B_2 - Highly Integrated 200 Kw SiC Three-Phase Dual-Active-Bridge Converter with 3D-Printed Fluid Coolers, David Bündgen, RWTH Aachen University, Germany
10:00 AM			S4A_3 - A Capacitor-Based Multilevel Gate Driver for GaN HEMT Only with a Single Voltage Supply, Takehiro Takahashi, Kyoto Institute of Technology, Japan		S4B_3 - SiC-Based dv/dt Generator for Insulation Testing with Fast and Adjustable Switching Transients, Vivien Grau , RWTH Aachen University, Germany
10:20 AM			S4A_4 - Optimization of Self-Oscillating Power Converter Based on GaN-HEMTs for Wireless Power Transfer, Dominik Koch, ILH, Universität Stuttgart, Germany		S4B_4 - High Frequency Injection Sensorless Control for a Permanent Magnet Synchronous Machine Driven by an FPGA Controlled SiC Inverter, Jared Walden, University of Tennessee - Knoxville, United States
10:40 AM			S4A_5 - An Isolated Bidirectional DC-DC Converter with High Voltage-Conversion Ratio and Reduced Output Current Ripple, Zhining Zhang , Ohio State University, United States	-	S4B_5 - Development of a 1 kV, 500 a T-Type Modular Dc Circuit Breaker (T-Breaker), Yue Zhang, Ohio State University, United States
11:00 AM	Break				
11:20 AM		Virtual posters 1, November 10, 2021, 11.20 am			
1:00 PM	End of the session		, ,		

All times in PST time zone

Day 5, November 11, 2021

	Plenary				
8:00 AM	Keynote 7		Jim w. Witham, GaN Systems, United States		One Size Doesn't Fit All - The Need for Multiple Approaches to GaN Circuit Design
8:30 AM	Keynote 8		Primit Parikh, Transphorm Inc, United States		Reliable and High Performance HV GaN in Production - from Adapters to Automotive
9:00 AM	Break		Room 1		Room2
9:20 AM			S5A_1 - Analysis of ALD Dielectric Leakage in Bulk GaN MOS Devices, Caleb Glaser , Sandia National Laboratories, United States		S5B_1 - Switching Behavior of a Hybrid Si-IGBT and SiC MOSFET Based ANPC Topology, Srikanth Lakshmeesha , Huawei Nuremberg Research Center, Germany
9:40 AM		Session 5A GaN Power 2: Technology	S5A_2 - Dynamic and Capacitive Characterization of 3D GaN n-p-n Vertical Fin-FETs, Thomas Bordignon , University of Padova, Italy	Session 5B SiC Applications 2: Device Characterization	S5B_2 - Balancing Unequal Temperature Distributions of Parallel- Connected SiC MOSFETs Using an Intelligent Gate Driver, Christoph Lüdecke, ISEA, RWTH Aachen University, Germany
10:00 AM			S5A_3 - Deep-Level Characterization of GaN-on-GaN Current Aperture Vertical Electron Transistors, Matthias Sinnwell, Fraunhofer Institute for Applied Solid State Physics, Germany		S5B_3 - An Integrated Active Gate Driver for SiC MOSFETs, Dongwoo Han, Center for Advanced Power Systems, Florida State University, United States
10:20 AM			S5A_4 - High Mobility in GaN MOSFETs with AlSiO Gate Dielectric and AlN Mobility Enhancement Layer, Matthew Smith, Toshiba Corporation, Japan	Characterization	S5B_4 - Liquid Metal Based Cooling for Power Electronics Systems with Inductor Integrated Magnetohydrodynamics Pump (MHD Pump), Junchong Fan, Ohio State University, United States
10:40 AM			S5A_5 - Etched and Regrown Vertical GaN Junction Barrier Schottky Diodes, Andrew Binder , Sandia National Laboratories, United States		S5B_5 - Characterization of Electrical Parameters for Health Monitoring in SiC MOSFETs During AC Power Cycling, Kevin Muñoz Barón , ILH, Universität Stuttgart, Germany
11:00 AM	Break				
11:20 AM		Error! Reference source not found.			
1:00 PM	End of the session				

All times in PST time zone

Virtual posters 1, November 10, 2021, 11.20 am

PO1_2 An Asynchronous Buck Converter by Using a Monolihic GaN IC Integrated by an Enhancement-Mode GaN-on-SOI Process Shumpei Noike, Kyoto Institute of Technology, Japan Modeling, Simulation and Hardware Implementation of the GaN Based Resonance Current Source for the Ultra-Fast MVDC Circuit Breaker, Md Rakib-Ur Rahman, Marquette University, United States PO1_4 Three-Phase three-Level GaN-ANPC Inverter with a 1 MHz Switching Frequency, Heikki Järvisalo, LUT University, Finland Effect of Trap-Filling Bias on the Extraction of the Time Constant of Drain Current Transients in AlGaN/GaN HEMTs, Nicolò Zagni, Università degli Studi di Modena e Reggio Emilia, Italy PO1_6 Evaluation of the High Performance 650 V Cascode GaN FET Under Low Temperature, Yuqi Wei, University of Arkansas, United States PO1_7 Humidity Capability of Enhancement Mode GaN High Electron Mobility Transistors, Alexander Brunko, Universität Bremen, Germany Dynamic ON-Resistance Characterization of GaN HEMT Under Soft-Switching Condition, Tianyu Zhao, Rolando Burgos, Jing Xu, ABB Corporate Research Center, United States PO1_9 Integration of β-Ga2O3 on Si (100) for Lateral Schottky Barrier Diodes, Manoj K Yadav, Indian Institute of Technology Mandi, India PO1_10 Commercially Available N-Polar GaN HEMT Epitaxy for RF Applications, Davide Bisi, Transphorm Inc, United States TCAD Simulations Study on Drain Leakage Current and its Correlation with Gate Current for AlGaN/GaN HEMTs, Cristina Miccoli, ST Microelectronics, Italy Design of Ka-Band Doherty Power Amplifier Using 0.15 μm GaN on SiC Process Based on Novel Complex Load Modulation, Xinyu Zhou	PO1 1	Modulation Strategy Comprising TCM with Frequency Limit and DPWM for Fast Switching GaN-Inverters
PO1_3 Modeling, Simulation and Hardware Implementation of the GaN Based Resonance Current Source for the Ultra-Fast MVDC Circuit Breaker, Md Rakib-Ur Rahman, Marquette University, United States PO1_4 Three-Phase three-Level GaN-ANPC Inverter with a 1 MHz Switching Frequency, Heikki Järvisalo, LUT University, Finland Effect of Trap-Filling Bias on the Extraction of the Time Constant of Drain Current Transients in AlGaN/GaN HEMTs, Nicolò Zagni, Università degli Studi di Modena e Reggio Emilia, Italy PO1_6 Evaluation of the High Performance 650 V Cascode GaN FET Under Low Temperature, Yuqi Wei, University of Arkansas, United States PO1_7 Humidity Capability of Enhancement Mode GaN High Electron Mobility Transistors, Alexander Brunko, Universität Bremen, Germany Dynamic ON-Resistance Characterization of GaN HEMT Under Soft-Switching Condition, Tianyu Zhao, Rolando Burgos, Jing Xu, ABB Corporate Research Center, United States PO1_9 Integration of β-Ga2O3 on Si (100) for Lateral Schottky Barrier Diodes, Manoj K Yadav, Indian Institute of Technology Mandi, India PO1_10 Commercially Available N-Polar GaN HEMT Epitaxy for RF Applications, Davide Bisi, Transphorm Inc, United States PO1_11 TCAD Simulations Study on Drain Leakage Current and its Correlation with Gate Current for AlGaN/GaN HEMTs, Cristina Miccoli, ST Microelectronics, Italy Design of Ka-Band Doherty Power Amplifier Using 0.15 μm GaN on SiC Process Based on Novel Complex Load Modulation, Xinyu Zhou	101_1	Benedikt Kohlhepp, Friedrich-Alexander University, Germany
PO1_3 Modeling, Simulation and Hardware Implementation of the GaN Based Resonance Current Source for the Ultra-Fast MVDC Circuit Breaker, Md Rakib-Ur Rahman, Marquette University, United States PO1_4 Three-Phase three-Level GaN-ANPC Inverter with a 1 MHz Switching Frequency, Heikki Järvisalo, LUT University, Finland Effect of Trap-Filling Bias on the Extraction of the Time Constant of Drain Current Transients in AlGaN/GaN HEMTs, Nicolò Zagni, Università degli Studi di Modena e Reggio Emilia, Italy PO1_6 Evaluation of the High Performance 650 V Cascode GaN FET Under Low Temperature, Yuqi Wei, University of Arkansas, United States PO1_7 Humidity Capability of Enhancement Mode GaN High Electron Mobility Transistors, Alexander Brunko, Universität Bremen, Germany PO1_8 Dynamic ON-Resistance Characterization of GaN HEMT Under Soft-Switching Condition, Tianyu Zhao, Rolando Burgos, Jing Xu, ABB Corporate Research Center, United States PO1_9 Integration of β-Ga2O3 on Si (100) for Lateral Schottky Barrier Diodes, Manoj K Yadav, Indian Institute of Technology Mandi, India PO1_10 Commercially Available N-Polar GaN HEMT Epitaxy for RF Applications, Davide Bisi, Transphorm Inc, United States PO1_11 TCAD Simulations Study on Drain Leakage Current and its Correlation with Gate Current for AlGaN/GaN HEMTs, Cristina Miccoli, ST Microelectronics, Italy Design of Ka-Band Doherty Power Amplifier Using 0.15 μm GaN on SiC Process Based on Novel Complex Load Modulation, Xinyu Zhou		An Asynchronous Buck Converter by Using a Monolithic GaN IC Integrated by an Enhancement-Mode GaN-on-SOI Process
PO1_4 Three-Phase three-Level GaN-ANPC Inverter with a 1 MHz Switching Frequency, Heikki Järvisalo, LUT University, Finland Effect of Trap-Filling Bias on the Extraction of the Time Constant of Drain Current Transients in AlGaN/GaN HEMTs, Nicolò Zagni, Università degli Studi di Modena e Reggio Emilia, Italy PO1_6 Evaluation of the High Performance 650 V Cascode GaN FET Under Low Temperature, Yuqi Wei, University of Arkansas, United States PO1_7 Humidity Capability of Enhancement Mode GaN High Electron Mobility Transistors, Alexander Brunko, Universität Bremen, Germany PO1_8 Dynamic ON-Resistance Characterization of GaN HEMT Under Soft-Switching Condition, Tianyu Zhao, Rolando Burgos, Jing Xu, ABB Corporate Research Center, United States PO1_9 Integration of β-Ga2O3 on Si (100) for Lateral Schottky Barrier Diodes, Manoj K Yadav, Indian Institute of Technology Mandi, India PO1_10 Commercially Available N-Polar GaN HEMT Epitaxy for RF Applications, Davide Bisi, Transphorm Inc, United States TCAD Simulations Study on Drain Leakage Current and its Correlation with Gate Current for AlGaN/GaN HEMTs, Cristina Miccoli, ST Microelectronics, Italy Design of Ka-Band Doherty Power Amplifier Using 0.15 μm GaN on SiC Process Based on Novel Complex Load Modulation, Xinyu Zhou	P()1 /	
 PO1_4 Three-Phase three-Level GaN-ANPC Inverter with a 1 MHz Switching Frequency, Heikki Järvisalo, LUT University, Finland Effect of Trap-Filling Bias on the Extraction of the Time Constant of Drain Current Transients in AlGaN/GaN HEMTs, Nicolò Zagni, Università degli Studi di Modena e Reggio Emilia, Italy PO1_6 Evaluation of the High Performance 650 V Cascode GaN FET Under Low Temperature, Yuqi Wei, University of Arkansas, United States PO1_7 Humidity Capability of Enhancement Mode GaN High Electron Mobility Transistors, Alexander Brunko, Universität Bremen, Germany Dynamic ON-Resistance Characterization of GaN HEMT Under Soft-Switching Condition, Tianyu Zhao, Rolando Burgos, Jing Xu, ABB Corporate Research Center, United States PO1_9 Integration of β-Ga2O3 on Si (100) for Lateral Schottky Barrier Diodes, Manoj K Yadav, Indian Institute of Technology Mandi, India PO1_10 Commercially Available N-Polar GaN HEMT Epitaxy for RF Applications, Davide Bisi, Transphorm Inc, United States PO1_11 TCAD Simulations Study on Drain Leakage Current and its Correlation with Gate Current for AlGaN/GaN HEMTs, Cristina Miccoli, ST Microelectronics, Italy Design of Ka-Band Doherty Power Amplifier Using 0.15 μm GaN on SiC Process Based on Novel Complex Load Modulation, Xinyu Zhou 	204.2	Modeling, Simulation and Hardware Implementation of the GaN Based Resonance Current Source for the Ultra-Fast MVDC Circuit
PO1_5 Effect of Trap-Filling Bias on the Extraction of the Time Constant of Drain Current Transients in AlGaN/GaN HEMTs, Nicolò Zagni, Università degli Studi di Modena e Reggio Emilia, Italy PO1_6 Evaluation of the High Performance 650 V Cascode GaN FET Under Low Temperature, Yuqi Wei, University of Arkansas, United States PO1_7 Humidity Capability of Enhancement Mode GaN High Electron Mobility Transistors, Alexander Brunko, Universität Bremen, Germany Dynamic ON-Resistance Characterization of GaN HEMT Under Soft-Switching Condition, Tianyu Zhao, Rolando Burgos, Jing Xu, ABB Corporate Research Center, United States PO1_9 Integration of β-Ga2O3 on Si (100) for Lateral Schottky Barrier Diodes, Manoj K Yadav, Indian Institute of Technology Mandi, India Commercially Available N-Polar GaN HEMT Epitaxy for RF Applications, Davide Bisi, Transphorm Inc, United States TCAD Simulations Study on Drain Leakage Current and its Correlation with Gate Current for AlGaN/GaN HEMTs, Cristina Miccoli, ST Microelectronics, Italy Design of Ka-Band Doherty Power Amplifier Using 0.15 μm GaN on SiC Process Based on Novel Complex Load Modulation, Xinyu Zhou	PO1_3	Breaker, Md Rakib-Ur Rahman, Marquette University, United States
 PO1_5 Università degli Studi di Modena e Reggio Emilia, Italy PO1_6 Evaluation of the High Performance 650 V Cascode GaN FET Under Low Temperature, Yuqi Wei, University of Arkansas, United States PO1_7 Humidity Capability of Enhancement Mode GaN High Electron Mobility Transistors, Alexander Brunko, Universität Bremen, Germany PO1_8 Dynamic ON-Resistance Characterization of GaN HEMT Under Soft-Switching Condition, Tianyu Zhao, Rolando Burgos, Jing Xu, ABB Corporate Research Center, United States PO1_9 Integration of β-Ga2O3 on Si (100) for Lateral Schottky Barrier Diodes, Manoj K Yadav, Indian Institute of Technology Mandi, India PO1_10 Commercially Available N-Polar GaN HEMT Epitaxy for RF Applications, Davide Bisi, Transphorm Inc, United States PO1_11 TCAD Simulations Study on Drain Leakage Current and its Correlation with Gate Current for AlGaN/GaN HEMTs, Cristina Miccoli, ST Microelectronics, Italy Design of Ka-Band Doherty Power Amplifier Using 0.15 μm GaN on SiC Process Based on Novel Complex Load Modulation, Xinyu Zhou 	PO1_4	Three-Phase three-Level GaN-ANPC Inverter with a 1 MHz Switching Frequency, Heikki Järvisalo, LUT University, Finland
 PO1_6 Evaluation of the High Performance 650 V Cascode GaN FET Under Low Temperature, Yuqi Wei, University of Arkansas, United States PO1_7 Humidity Capability of Enhancement Mode GaN High Electron Mobility Transistors, Alexander Brunko, Universität Bremen, Germany PO1_8 Dynamic ON-Resistance Characterization of GaN HEMT Under Soft-Switching Condition, Tianyu Zhao, Rolando Burgos, Jing Xu, ABB Corporate Research Center, United States PO1_9 Integration of β-Ga2O3 on Si (100) for Lateral Schottky Barrier Diodes, Manoj K Yadav, Indian Institute of Technology Mandi, India PO1_10 Commercially Available N-Polar GaN HEMT Epitaxy for RF Applications, Davide Bisi, Transphorm Inc, United States PO1_11 TCAD Simulations Study on Drain Leakage Current and its Correlation with Gate Current for AlGaN/GaN HEMTs, Cristina Miccoli, ST Microelectronics, Italy Design of Ka-Band Doherty Power Amplifier Using 0.15 μm GaN on SiC Process Based on Novel Complex Load Modulation, Xinyu Zhou 		Effect of Trap-Filling Bias on the Extraction of the Time Constant of Drain Current Transients in AlGaN/GaN HEMTs, Nicolò Zagni,
 PO1_7 Humidity Capability of Enhancement Mode GaN High Electron Mobility Transistors, Alexander Brunko, Universität Bremen, Germany Dynamic ON-Resistance Characterization of GaN HEMT Under Soft-Switching Condition, Tianyu Zhao, Rolando Burgos, Jing Xu, ABB Corporate Research Center, United States PO1_9 Integration of β-Ga2O3 on Si (100) for Lateral Schottky Barrier Diodes, Manoj K Yadav, Indian Institute of Technology Mandi, India PO1_10 Commercially Available N-Polar GaN HEMT Epitaxy for RF Applications, Davide Bisi, Transphorm Inc, United States PO1_11 TCAD Simulations Study on Drain Leakage Current and its Correlation with Gate Current for AlGaN/GaN HEMTs, Cristina Miccoli, ST Microelectronics, Italy Design of Ka-Band Doherty Power Amplifier Using 0.15 μm GaN on SiC Process Based on Novel Complex Load Modulation, Xinyu Zhou 	PO1_5	Università degli Studi di Modena e Reggio Emilia, Italy
 PO1_7 Humidity Capability of Enhancement Mode GaN High Electron Mobility Transistors, Alexander Brunko, Universität Bremen, Germany Dynamic ON-Resistance Characterization of GaN HEMT Under Soft-Switching Condition, Tianyu Zhao, Rolando Burgos, Jing Xu, ABB Corporate Research Center, United States PO1_9 Integration of β-Ga2O3 on Si (100) for Lateral Schottky Barrier Diodes, Manoj K Yadav, Indian Institute of Technology Mandi, India PO1_10 Commercially Available N-Polar GaN HEMT Epitaxy for RF Applications, Davide Bisi, Transphorm Inc, United States PO1_11 TCAD Simulations Study on Drain Leakage Current and its Correlation with Gate Current for AlGaN/GaN HEMTs, Cristina Miccoli, ST Microelectronics, Italy Design of Ka-Band Doherty Power Amplifier Using 0.15 μm GaN on SiC Process Based on Novel Complex Load Modulation, Xinyu Zhou 	PO1 6	Evaluation of the High Performance 650 V Cascode GaN FFT Under Low Temperature Yugi Wei University of Arkansas United States
PO1_8 Dynamic ON-Resistance Characterization of GaN HEMT Under Soft-Switching Condition, Tianyu Zhao, Rolando Burgos, Jing Xu, ABB Corporate Research Center, United States PO1_9 Integration of β-Ga2O3 on Si (100) for Lateral Schottky Barrier Diodes, Manoj K Yadav, Indian Institute of Technology Mandi, India PO1_10 Commercially Available N-Polar GaN HEMT Epitaxy for RF Applications, Davide Bisi, Transphorm Inc, United States TCAD Simulations Study on Drain Leakage Current and its Correlation with Gate Current for AlGaN/GaN HEMTs, Cristina Miccoli, ST Microelectronics, Italy Design of Ka-Band Doherty Power Amplifier Using 0.15 μm GaN on SiC Process Based on Novel Complex Load Modulation, Xinyu Zhou		
PO1_8 Corporate Research Center, United States PO1_9 Integration of β-Ga2O3 on Si (100) for Lateral Schottky Barrier Diodes, Manoj K Yadav, Indian Institute of Technology Mandi, India PO1_10 Commercially Available N-Polar GaN HEMT Epitaxy for RF Applications, Davide Bisi, Transphorm Inc, United States PO1_11 TCAD Simulations Study on Drain Leakage Current and its Correlation with Gate Current for AlGaN/GaN HEMTs, Cristina Miccoli, ST Microelectronics, Italy Design of Ka-Band Doherty Power Amplifier Using 0.15 μm GaN on SiC Process Based on Novel Complex Load Modulation, Xinyu Zhou		
 PO1_9 Integration of β-Ga2O3 on Si (100) for Lateral Schottky Barrier Diodes, Manoj K Yadav, Indian Institute of Technology Mandi, India PO1_10 Commercially Available N-Polar GaN HEMT Epitaxy for RF Applications, Davide Bisi, Transphorm Inc, United States PO1_11 TCAD Simulations Study on Drain Leakage Current and its Correlation with Gate Current for AlGaN/GaN HEMTs, Cristina Miccoli, ST Microelectronics, Italy Design of Ka-Band Doherty Power Amplifier Using 0.15 µm GaN on SiC Process Based on Novel Complex Load Modulation, Xinyu Zhou 	POTX	
PO1_10 Commercially Available N-Polar GaN HEMT Epitaxy for RF Applications, Davide Bisi, Transphorm Inc, United States PO1_11 TCAD Simulations Study on Drain Leakage Current and its Correlation with Gate Current for AlGaN/GaN HEMTs, Cristina Miccoli, ST Microelectronics, Italy Design of Ka-Band Doherty Power Amplifier Using 0.15 μm GaN on SiC Process Based on Novel Complex Load Modulation, Xinyu Zhou	. 0 = _ 0	Corporate Research Center, United States
PO1_11 TCAD Simulations Study on Drain Leakage Current and its Correlation with Gate Current for AlGaN/GaN HEMTs, Cristina Miccoli, ST Microelectronics, Italy Design of Ka-Band Doherty Power Amplifier Using 0.15 μm GaN on SiC Process Based on Novel Complex Load Modulation, Xinyu Zhou	PO1_9	Integration of β-Ga2O3 on Si (100) for Lateral Schottky Barrier Diodes, Manoj K Yadav, Indian Institute of Technology Mandi, India
Microelectronics, Italy Design of Ka-Band Doherty Power Amplifier Using 0.15 μm GaN on SiC Process Based on Novel Complex Load Modulation, Xinyu Zhou	PO1_10	Commercially Available N-Polar GaN HEMT Epitaxy for RF Applications, Davide Bisi, Transphorm Inc, United States
Design of Ka-Band Doherty Power Amplifier Using 0.15 µm GaN on SiC Process Based on Novel Complex Load Modulation, Xinyu Zhou		TCAD Simulations Study on Drain Leakage Current and its Correlation with Gate Current for AlGaN/GaN HEMTs, Cristina Miccoli, ST
	PO1_11	
	PO1_12	Design of Ka-Band Doherty Power Amplifier Using 0.15 μm GaN on SiC Process Based on Novel Complex Load Modulation, Xinyu Zhou,
		Stanford University, United States
,, , , , , , , , , , , , , , , , , , , ,		· ·

Virtual posters 2, November 11, 2021, 11.20 am

PO2_1	Impact of Soft- and Hard-Switching Transitions on VTH and RON Drifts in Packaged SiC MOSFETs, Marcello Cioni, Università degli Studi di Modena e Reggio Emilia, Italy								
PO2_2	Real-Time FPGA Simulation of Silicon Carbide MOSFETs, Gard Lyng Rødal, Norwegian University of Science and Technology, Norway								
PO2_3	Critical Design Considerations for Static and Dynamic Performances on 6.5kV 4H-SiC MOSFETs Fabricated in a 6-Inch SiC Foundry, Nick Yun, State University of New York Polytechnic Institute, United States								
PO2_4	Peformance Evaluation of 3.3 kV SiC MOSFET and Schottky Diode for Medium Voltage Current Source Inverter Application, Sneha Narasimhan, North Carolina State University, United States								
PO2_5	Smart Universal Parameter Fitting Method for Static SiC Power MOSFET Behavior Modeling, Daniel Philipps , Norwegian University of Science and Technology, Norway								
PO2_6	Online Junction-Temperature Extraction Method for SiC MOSFETs Utilizing Turn-on Delay, Sven Kalker , RWTH Aachen University, Germany								
PO2_7	Comparison of Short Circuit Failure Modes in SiC Planar MOSFETs, Trench MOSFETs and Cascode JFETs, Erfan Bashar , University of Warwick, United Kingdom								
PO2_8	Development and Thermal Characterization of a Low Resistance SiC Module, Xiaoqing Song , ABB Corporate Research Center, United States								
PO2_9	Thermal and Thermomechanical Analysis of a 10 kV SiC MOSFET Package with Double-Sided Cooling, Mark Cairnie , CPES, Virginia Polytechnic Institute and State University, United States								
PO2_10	Demonstration of Cell-to-Cell Integrated 4H-SiC Lateral Bi-Directional Junction Field Effect Transistor (LBiDJFET), Seung Yup Jang, State University of New York Polytechnic Institute, United States								
PO2_11	Experimental Validations of the SiC MOSFET Based LLC Converter Circuit and Power Loss Models, Yuqi Wei , University of Arkansas, United States								
PO2_12	A Balanced Current-Source Inverter and its dc-Link Shunted Variant for Common-Mode Voltage Cancellation, Hang Dai, University of Wisconsin-Madison, United States								
PO2_13	Design and Development of SiC MOSFET Based DC-DC Converter for High-Temperature Space Application, Saikat Dey , Arizona State University, United States								
PO2_14	Hardware Design of Medium Voltage SiC-Based Modular Multilevel Converters for Grid-Tied Applications, Ke Wang , Ohio State University, United States								
PO2_15	Submodule Design for a 2 kV 1 MW Integrated Modular Motor Drive for Aviation Applications, Yizhou Cong, Ohio State University, United States								